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SUM: Sequential Scene Understanding and Manipulation

Zhiqgiang Sui Zheming Zhou

Abstract—In order to perform autonomous sequential ma-
nipulation tasks, perception in cluttered scenes remains a criti-
cal challenge for robots. In this paper, we propose a probabilistic
approach for robust sequential scene estimation and manip-
ulation - Sequential Scene Understanding and Manipulation
(SUM). SUM considers uncertainty due to discriminative object
detection and recognition in the generative estimation of the
most likely object poses maintained over time to achieve a
robust estimation of the scene under heavy occlusions and
unstructured environment. Our method utilizes candidates from
discriminative object detector and recognizer to guide the
generative process of sampling scene hypothesis, and each scene
hypotheses is evaluated against the observations. Also SUM
maintains beliefs of scene hypothesis over robot physical actions
for better estimation and against noisy detections. We conduct
extensive experiments to show that our approach is able to
perform robust estimation and manipulation.

I. INTRODUCTION

Perception is a critical capability to enable purposeful
goal-directed manipulation for autonomous robots, partic-
ularly in cluttered environments. Truly autonomous robot
manipulators need to be able to perceive the world, reason
over manipulation actions towards the goal, and carry out
these actions in terms of physical motion. Closing this loop
for autonomous scene-level manipulation is now within reach
given the current advances in capable mobile manipulation
platforms (such as the Fetch platform shown in Fig. [T] and
tractable task and motion planning. Without the ability to
perceive in common unstructured environments, however, au-
tonomous manipulation will remain restricted to simulation
and highly controlled environments.

Previously, we addressed the problem of perception
for goal-directed manipulation as axiomatic scene estima-
tion [32], [33], sharing similar aims to existing work in scene
estimation for manipulation of rigid objects [22], [23], [19],
[17], [6]. These methods take a generative multi-hypothesis
approach to robustly inferring a tree-structured scene graph,
as object poses and directed inter-object relations, from
cluttered scenes observed as 3D point clouds. The inferred
scene graph estimate can be expressed as parameterized
axioms that allow for interoperable symbolic task and motion
planning towards goals expressed as desired scenes in world
space. We posit this pattern of symbolic task-level reasoning
using estimates from probabilistic perception will be as
applicable to scenes for autonomous manipulation as it has
been for autonomous navigation.
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Fig. 1: (Top) a robot using SUM for scene perception in the sorting of a
cluttered set of objects on a table into cleaning (right bin) and non-cleaning
categories (left bin). SUM performs perception by using (bottom left) RGB
object recogition to inform (bottom right) sequential pose estimation from
3D point cloud observations and the feasible grasp poses on the manipulated
object.

Existing formulations of axiomatic scene estimation im-
pose several limiting assumptions that must be relaxed for
viable autonomous manipulation. First, existing axiomatic
scene estimators assume the identification of objects ob-
served in a scene are given or provided by an idealized
object detection and recognition system. Object detection and
recognition [15], [12], [11] has greatly improved towards
feasible general use, due in part to the renaissance in
convolutional neural networks. However, such recognition
methods remain subject to substantial and inherent errors
in discriminating false positive and negative detections. As
such, our robots will need to handle uncertainty due to
such recognition errors in both its scene estimation and task
execution.

Second, scenes have been assumed to be static, where
scene state at each moment in time is effectively decoupled
sequentially from its past state. This assumption can be
prohibitively costly in terms of computation, as the dimen-
sionality of scene state space grows exponentially with the
number of scene objects. We posit that robots can manage
this complexity by maintaining a belief of scene state over
time informed by past beliefs, a manipulation process model,
and current object detections, as well as incorporation of



physical and contextual constraints [10].

Lastly, existing scene estimation often assumes some scene
structure, such as a canonical object orientation, a large flat
surface support, or “stacking” as a single support surface
per object. By maintaining belief sequentially and managing
computational burden, our robots will be able to perform
tractable inference in cluttered scenes with full six degree-
of-freedom object poses and an arbitrary number inter-object
contacts and supports.

In this paper, we propose Sequential Scene Understanding
and Manipulation (SUM) as a model for scene perception
from RGBD sensing in sequential manipulation tasks. SUM
considers uncertainty due to discriminative object detection
and recognition in the generative estimation of the most
likely object poses maintained over time. Towards this end,
SUM utilizes the output of modern convolutional neural
networks [12] for object detection and recognition to guide
the generative process of sampling scene hypotheses within
a pose estimation process. Pose estimation is modeled as
a recursive Bayesian filter [8], [36] to maintain a belief
over object poses across a sequence of robot actions. We
demonstrate the effectiveness and robustness of SUM with
respect to both perception and manipulation errors in a
cluttered tabletop scenario for an object sorting task with
a Fetch mobile manipulator.

II. RELATED WORK
A. Perception for Manipulation

We summarize a relevant subset of existing work with
respect to perception for manipulation. The PR2 interac-
tive manipulation pipeline [5] segments objects from a
flat tabletop surface through clustering of surface normals.
This pipeline can perform relatively robust pick-and-place
manipulation for isolated, non-occluded, and non-touching
objects. For cluttered scenes, Narayanaswamy et al. [24]
perform pose and structure estimation of toy parts for flexible
assembly of structures. MOPED [6] is a framework for
objects detection and pose estimation using clustering of
features from multi-views. Joho et al. [17] use a probabilistic
generative model to model the spatial arrangement of objects
on a flat surface in the context of a table setting task.

Narayanan et al. [22], [23] are similar to our work on
estimation where they integrate exhaustive global reasoning
with discriminatively-trained algorithm to perform scene
estimation. However, their work assume the identification of
objects are given or provided by an idealized object detection
and recognition system in order to perform A* search.

In terms of sequential manipulation, the KnowRob sys-
tem [35] performs task-directed manipulation at the scale of
entire buildings by integrating different knowledge sources
from a perception system, an internal knowledge base and
Internet repositories. Srivastava et al. [29] perform jointly
task and motion planning for goal-directed manipulation
relying upon a hard-coded perception system. Cogsun et
al. [7] performs sequential manipulation for placing objects
in a scene where the objects are separating on a clear table.
Similar to SUM , Papasov et al. [25] perform sequential scene

estimation and manipulation through matching of known
3D geometries with an observed point cloud. However,
this method takes a bottom-up approach using a RANSAC
algorithm with Iterative Closest Point registration that neither
requires nor uses a model of uncertainty.

B. Object Recognition and Pose Estimation

We consider two categories of traditional methods for
model-based object recognition and pose estimation into
two categories. First, feature-based methods, also known as
descriptor-based methods, aim to match key features in the
models to the scenes. Key features can be comprised of local
or global descriptors [1]. Using local features [16], [28], [26],
the pose of the object is estimated by first matching a set
of extracted features from object model to the scene. Then,
every matching pair will go through the filtering process to
generate the final transformation. In contrast, methods using
global features [2], [20], [27] attempt to match features with
high resistance to the variance of the object pose. The object
pose can be estimated by comparing those pose-preserving
features from the training phase with the features computed
from test scene. A limitation of feature-based methods is that
the estimation quality will degrade as the number of objects
(and clutter) in the scene increases due to occlusion of key
features.

Alternatively, generative methods (or analysis by synthe-
sis) attempt to find the state estimate that best describes
the observed sensor input through iterating over compar-
isons with state hypotheses rendered into sensor readings.
The Render-Match-Refine paradigm of Stevens and Bev-
eridge [30] applied iterative optimization method to find
a rendering that best explain the input. Their early work
demonstrated Render-Match-Refine for 2D images, relying
upon low-level feature extraction. Recent work uses convo-
Iutional neural networks (CNNs) to compare rendered and
observed images. Among this work, Krull et al. [18] cast
the CNN as a probabilistic model to output energy value,
where as work by Gupta et al. [13] directly output a coarse
object pose and use ICP to refine it later. However, these
methods do not address multi-object pose estimation such as
in cluttered scenes.

Similarly building on the renaissance in CNNs, object de-
tection and recognition has greatly improved towards feasible
general use. The Region-based Convolutional Neural Net-
work method (R-CNN) [12] is a two-stage object detection
system that integrates a high capacity CNN with bottom-up
region proposal methods, which has demonstrated excellent
detection accuracy.

III. PROBLEM FORMULATION

Given past RGBD observations (zo,...,z) and robot ma-
nipulation actions (u,...,u;), our aim is to estimate the
scene as a collection of k objects, with object labels o,
2D image-space bounding boxes b;, and six DoF object
poses ¢g;. Note, k is the number of objects recognized in
the scene. Object labels are strings containing a semantic
identifier assumed to be a human-intuitive reference. In our
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Fig. 2: An overview of our SUM framework. Given an observation of the scene, pre-trained R-CNN object detector and recognizer output bounding
boxes and object labels along with their confidence. Assuming that every object is independent with each other, we estimate the state of the scene by
estimating the state of each object individually. The numbers in the figure denotes the value of each term that composes to the posterior probability of
a hypothesized object state. Multiple object pose estimator can originate from the same bounding box, for example, both the “shampoo” and clorox”
pose estimator originates from the same bounding box, and clorox is selected as the correct estimate since it has higher p(x}). More detail is explained in

Section [ and Equation [3}

experiments, the manipulation actions u, are pick-and-place
actions, which will invoke a motion planning process. How-
ever, our formulation is general such that i, also applies to
low level motor commands represented by joint torques, such
as in scenarios for object tracking. The state of an individual
object i in the scene is represented as xi = {q!,b! 0'}. We
assume that every object is independent of all other objects,
which implies there will be only one object with a given
label in the eventual inferred scene estimate. Independence
between objects allows us to state this scene estimation
problem as:
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using the statistical chain rule and independence assump-
tions to yield Equations 2] and [3] respectively. Equation [3]
represents the factoring of the scene estimation problem
into object detection, object recognition, and belief over

detection recognition

object pose. The object detection factor p(b!|z;) denotes the
probability of object i being observed within the bounding
box b} given observation z,. The object recognition factor
p(o'|b,z) denotes the probability of this object having label
o' given the observation z; inside the bounding box bi. These
distributions are generated as the output of a pre-trained
discriminative object detector and recognizer that evaluates
all possibilities. The implementation of these detectors and
recognizers is as explained in Section The pose belief
factor for a particular object o' is modeled over time by a
recursive Bayesian filter, as illustrated in Figure[3] The belief
over the object pose ¢! at time ¢ is estimated as:

Bel(q}) =

plzlq;,b},0") /i p(gild;—y.ue,b},0") Bel(q;_y)dg;_y
q;
observation model !

action model

Further explanations of the observation likelihood function
and the action model are in section [Vl

A. Data Association

Across all objects, this Bayesian filtering framework also
requires a data association process to correspond previous
object estimators with the current detection and recognition.
Data association for SUM maintains independent filters for
each possible object, which are spawned or terminated based
on object detection and recognition. At the initial instance



Fig. 3: Graphical model for estimating pose of a particular object of
given observations, actions. The bounding box and object label hypothesis
at each frame is based on object detection, recognition and data association
as explained in Section

of time t = 0, the number of objects k is estimated by
thresholding on the detection and recognition results for the
initial observation zo. For each recognized object o' along
with its bounding box b, we will assign an object pose
estimator to localize the object within the region defined by
b{). When the robot manipulates the objects in the scene for
the next action u, the objects poses change as a result. To
decide within which region that each object pose estimator
should continue to localize the object o', there is a data
association stage where it is associated to a bounding box
b detected at time ¢ = 1 after the robot action. Thus after
every robot action u,, the robot receives a new observation
7, a data association stage takes care of associating each
object estimator T with a bounding box b, detected in z.
More details on data association and when to terminate or
add an object estimator is discussed in section

IV. METHODOLOGY

A. Object Detection and Recognition

The SUM model above is agnostic to the specific al-
gorithms for objects detection and recognition as long as
distributions of possible object bounding boxes b and labels
o can be generated. Specifically, each proposed detection of
an object will have an bounding box in the image space
with a probability of belonging to one of N object labels in
the training database. For each generated bounding box at
time ¢, we filter out an object proposal o;, 1 <1 <N, if its
confidence is smaller than a certain ratio o, of the maximum
confidence in this bounding box:

p(o1]z0,b) < rrzellxp(01|zo,b) - O, 3)

where o, € (0...1). The number of recognized objects k is
determined by the above thresholding procedure. An object
pose estimator T’ is associated to each recognized object i
and its corresponding bounding box bf) and object label o
pair.

B. Particle Filtering

Particle filtering is employed with each object estimator
T' to infer the pose ¢! of object i. A particle filter is a
means of inference for the sequential Bayesian filter in Eq. [
through an approximation consisting of n weighted particles,
{g7 W "_;. Weight w') for particle g’ is expressed as:

Bel(q!)
p(zlgi b0 Y p(al gl u b0 )Bel(qi ) ©

J

as described by Dellaert et al. [8]. The initial belief of
object pose is uniform. At each time instance, the weight
of each hypothesis is computed, normalized to one, and
resampled based on importance into an updated set of n
particles: o

g ~ Y1 p(a] 14, 0) )
J

Before each robot action, we apply iterated likelihood
weighting [21] to estimate the distribution of the object pose
given the bounding box and the object label. This serves as
a bootstrap filter, where the state transition in action model
is replaced by a zero-mean Gaussian noise.

Our observation likelihood function measures how well a
particle’s rendered point cloud explains the observation point
cloud. The observation model of this particle filter uses the
z-buffer of a 3D graphics engine to render each particle q;j
into a depth image for comparison with the observation. This
depth image, represented as it(] ), is backprojected into a point
cloud ?,(" ) in the camera frame to simulate the camera model.
The observation likelihood for each particle hypothesis with
respect to the point cloud r; associated with the observation
Z; 1s then expressed as:

Y. .. INLIERS (7 (a,b), 7" (a,b))

p(Zt|QZjvb§70i) = — N, ©

where a and b are 2D indices in the rendered point cloud
ft(j ), N, is the total number of points in the observation point

cloud and

L, if lp—pll,<e
0, otherwise

INLIERS(p, p') = { )
Thus, if the Euclidean distance between an observed point
and a rendered point are within a certain sensor resolution
€, total number of inliers will increment by 1.

A robot manipulation action is represented by
u(j, Ppicis Pplace)- This pick-and-place action is parametrized
by the target object index j, object pick and place pose
Opick> Ppiace- For a particular object o', we use Gaussian
components to model how the object pose ¢; will change
from ¢'_, after a robot action u;(j, @pick, Ppiace)s

p(q”qifhut(]’aq’pickv¢place)vb;’70i)
o WlN(¢placevclz) +W2N(6]§,17622)a ifi= ] (10)
N(Q;_lacjiz)7 lfl#]



If the action u, is targeted on object o', then either the
action succeeds and the object is moved to the place pose
@piace With uncertainty characterized by 612, or the action
fails and the object stays at its previous pose g;—1 with
uncertainty characterized by 622. If the action u, is not
targeted on object o', then we assume that the object stays at
its previous pose qﬁ_l with uncertainty characterized by 0'32.
In cases where the action fails due the manipulated object
being accidentally mishandled, the new pose g; far from its
previous pose ¢, or its expected pose from manipulation
success. This possibility is currently not modeled. Instead,
data association will handle this object through the spawning
of a new estimator.

C. Data Association

Data association is needed to associate each currently de-
tected object bounding box with at most one object estimator
at each moment in time. We use a greedy algorithm for
our data association problem, which yields similar results
at lower computational cost compared to the Hungarian
algorithm (as reported by Breitenstein et al. [4]). First, a
matching score matrix S of every pair (77,b!) of object
estimator and bounding box is calculated, with the matching
score defined as

s(T', b)) = 10U (bi_, b)) p(bl|z ) p(o'[bl,z)  (11)

which consists of three factors: the overlap between b! and
bLl by Intersection over Union (IoU), the likelihood of an
object to be in bounding box bf, the likelihood of object
o' inside the bounding box b!. The pair (T"",b") with the
maximum score in S is selected as an established association.
The rows and columns belonging to the object estimator 7"
and the bounding box b!" are removed from S. This process
is repeated until no further pairing is possible. In the end, we
only keep the established associations with a matching score
above a chosen threshold. A new object estimator is spawned
for a bounding box b! not associated with any existing object
estimators. An object estimator will be terminated if it is
not associated with any bounding boxes for K consecutive
frames.

V. IMPLEMENTATION

Our implementation of SUM uses R-CNN in a manner
that divides object detection problem into two stages: a)
image proposal generation, and b) proposal classification. R-
CNN was chosen because of its suitability for small datasets
and relatively high accuracy. The baseline image proposals
generation method used by R-CNN, selective search [37],
was replaced for Edge Boxes [38] due to its computational
efficiency and recall [14]. The Edge Box method is an edge-
based proposal generation method which applies a score
function to evaluate the completeness of contours that contain
in a certain bounding box. By implementing structured
decision tree, the evaluation process for a huge number of
candidate boxes can be performed in a second. A Softmax
layer was used for the final label output layer rather than a
separate SVM.

©) (d)

Fig. 4: The SUM dataset objects (a). Eight of these objects in a cluttered
scene (b) viewed as an observed depth image (c) and as ground truth (d).

For particle filtering, we employed the CUDA-OpenGL
interoperation to render all particles in a single render buffer
on the GPU and can be accessed by the CUDA kernels to
compute the weights for particles. The major computation
is operated on directly on GPU and there is very few data
transfer between GPU and CPU memory. This provides a
tractable solution for us to employ more particles to sample
hypothesized objects.

Manipulation actions used TRAC-IK [3] to generate the
joint states of the arm given the pose of the end-effector
and Movelt![31] to perform motion planning afterwards.
Based on methods proposed by ten Pas and Platt [34], a
custom grasp planning pipeline was developed to evaluate
all possible grasp candidates based on the Darboux frame
(surface normal and principal curvature axes) of each object
vertex.

VI. RESULTS

We first examined SUM on single scenes where estimates
static images without robot actions. We compare SUM with a
local descriptor, Fast Point Feature Histograms (FPFH) [27],
on 10 test scenes of cluttered unstructured environment.
For sequential manipulation, eight experiments for sorting
objects into two groups were performed with a Fetch mobile
manipulation robot.

SUM was run on a Ubuntu 14.04 system with an Titan
X Graphics card and CUDA 7.5with 625 particles and 25
resampling iterations for all trials. o, is set to 0.1. Sensor
resolution € is set to 0.008 in meters. o7, 0> and O3 are
set to 0.04, 0.02, 0.01 respectively. A custom dataset of 15
household objects (Figure f) was used for testing, as well
as 3D model generation. For CNN training, 8-10 streams
of each object in the dataset was captured in a variety
of different poses with different backgrounds. The whole
training dataset contains 8366 ground truth images and 60563
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Fig. 5: The plots compare the performance between our method SUM
and FPFH with respect to the accuracy of correct poses. In each plot, there
is a fixed translation error bound (lcm, 5cm, 10cm and 20cm), the x-axis
is the changing rotation error bound and the y-axis is the percentage of
the correct poses. Each point in the plot shows the accuracy of correctly
localized objects with a fixed translation and rotation error bound.

background images. The Caffenet model [15] was used for
network fine-tuning, which was trained on ImageNet [9].

A. Single Scene Estimation

SUM was evaluated and compared with FPFH on 10
single scenes, with 10 trials each, with respect to the ac-
curacy of estimated object poses.We compute the accuracy
of correct poses over all the test scenes and all the runs.
Accuracy is defined as the number of correctly localized
objects over the total number of detection true positives
from the RCNN object detector, where a true positive has
IoU greater than 0.5 between estimated and ground truth
bounding boxes. We deem an object as correctly localized
if its translation error and rotation error fall with chosen
error bounds. The translation error is the Euclidean distance
between estimated object position (x,y,z) and ground truth
pose (Xgr,Yer,Zgr) and the orientation error is the shortest
angle error between estimate object (roll, pitch,yaw) and
ground truth (rolly, pitchg ,yawg ).

The four plots in Fig. [5] depict the comparison between
SUM and the baseline method. In each plot, there is a fixed
translation error bound (1cm, Scm, 10cm and 20cm) and the
x-axis is the changing rotation error bound. The y-axis is
the percentage of the correct poses. We can see in Fig. [5a]
[5b] and [5¢} our method performs better than FPFH in the
small error bounds (translation error smaller than 1cm, Scm
10cm). SUM can also reject false positives from detection
results. Fig [6] shows two examples of how SUM corrected
false positives from detection results. We also calculated the
mean ratio of rejected detection false positives. The mean
ratio of rejected detection false positives over all the test
scenes is 0.84 and the standard error over 10 runs is 0.0126.

B. Estimation and Manipulation on Sequential Scenes

In the manipulation evaluation, the robot must sort object
on a cluttered tabletop into cleaning and non-cleaning cate-
gories by picking and placing the object into the right or left
bin. In order to make a natural unstructured scene, we avoid
manually placing objects in the scene by indiscriminately
pouring the objects onto the cluttered table. After scene
estimation by SUM , the object with the most likely estimate
is selected to be grasped and sorted into the appropriate bin.
No matter whether the robot succeeds or not, SUM updates
the pose hypotheses by the action model, associates the
object estimators with current detection results and estimates
the scene iteratively.

The manipulation results are shown in Table [l] Each scene
contains five recognizable objects. We evaluate the method
by the completion ratio of each sequence shown in the last
row of the table. The completion ratio is how much the
recognizable objects on the table are successfully sorted by
the robot. The robot successfully completed six out of eight
sequences. In sequence(a), failure occured when robot was
trying to pick up “downy”, it swept “sugar can” onto the
ground. In sequence(f), the robot failed to pick up “waterpot”
as the feasible grasp poses are out of joint limits of the arm.
As shown in the second row, a manipulation action error
occurs about once on average per trial. Despite such errors,
SUM performs robustly to not only detection uncertainties
but also manipulation failures. As shown in Figure [/} there
is a manipulation error in the fourth action of the sequence,
where the “spray bottle” slipped from the gripper. SUM
subsequently estimated this object again and the robot picked
it up successfully.

VII. CONCLUSION

In this paper, we propose SUM as a combined gen-
erative and discriminative approach to robust sequential
scene estimation and manipulation. SUM utilizes output from
discriminative object detector and recognizer to guide the
generative process of sampling scene hypothesis for 6DOF
pose estimation. By maintaining a belief over object poses
over a sequence robot actions, SUM is able to perform robust
estimation and manipulation in a cluttered and unstructured
tabletop scenario.
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