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Dynamical Simulation Priors for Human Motion
Tracking
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Abstract —We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical
ground-person interactions. Most tracking approaches to date have focused on ef cient inference algorithms and/or le arning of prior
kinematic motion models; however, few can explicitly account for physical plausibility of recovered motion. Here, we aim to recover
physically plausible motion of a single articulated human subject. Towards this end, we propose a full-body 3D physical simulation-
based prior that explicitly incorporates a model of human dynamics into the Bayesian lItering framework. We consider th e motion of
the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics
of the human and the environment through the application and integration of interaction forces, motor forces and gravity. Interaction
forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts) and
are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are
physically feasible and are generated using a motion controller. For ef cient inference in the resulting high-dimensi onal state space, we
utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover
physically-plausible motion of human subjects from monocular and multi-view video. We show, both quantitatively and qualitatively, that
our approach performs favorably with respect to Bayesian | tering methods with standard motion priors.

Index Terms —articulated tracking, human pose tracking, human motion, physical simulation, physics-based priors, Bayesian lte ring,
particle Itering.
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1 INTRODUCTION

We consider the problem of physically plausible human nmtig
tracking from video. Although the area of articulated pos
tracking has seen many advances, the general problem
tracking the 3D motion of a person in typical environment
from monocular image observations remains a challengeh Hi
dimensionality of human pose, variability in imaging condi
tions, appearance and clothing are but some of the issues
need to be addressed. Most prior approaches to tracking h
concentrated on developing search methods and motiorspri
that allow ef cient inference in this high-dimensional gos
space. However, physical realism of such motion priors a
plausibility of the recovered motion remains an open pnoble
As a result, many existing methods suffer from visuall
distinct and physically implausible artifacts, includirigot
skate, out-of-plane rotations and jitter. With these comse Fig. 1. Incorporating physics-based dynamic simulation
in mind, we propose a method for incorporating full body with joint actuation and dynamic interaction into Bayesian
physical simulation for prediction within the probabilistic  Itering . The gure's motion is determined by its dynam-
tracking framework of Bayesian ltering . ics, actuation forces at joints (top) and surface interaction
Dynamical simulation has a large body of existing work it contacts (bottom).
animation [4], [16], [19], [21], [31], [[38],[39], [[60] [[6Band
robotics [10], [28], [47],[[59] and is now a commodity techno
ogy. Simulation allows to computationally account for eals e g, a person's mass, gravity, interaction with the ground
physical and biomechanical factors that affect human motigy|ane, friction, self-collisions and physical disturbaacOur
goal is to build a tracking system that can take advantage of
M. Vondrak and O. C. Jenkins are with Department of Computéere, predictions based on such simulations so that the search for
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[13] or by learning statistical models from reference human
motion capture data, as ih_[52]. Motion capture data can be
thought of as a snapshot of the dynamics that occurred at
the time when the motion was captured and within a given
environment where it was performee.g, typically on a
non-compliant level surface/ground). Such motion capture
based priors are limited to a specic motion, or class of
motions, subject to the environment at the time of collec-
tion and, consequently, have dif culty generalizing to new
environments €.g, non-level ground or stairs). In addition, .
because the underlying physical phenomena are encoded drif}y 2: Figure model 31 degree-of-freedom (DOF) human
indirectly through statistical relations over body kindivs, model with collision geometries of the gure segments
pose samples produced by such priors are not guaranteed&f): the joints and skeletal structure (middie) and the
be physically valid. As such, kinematic priors can not eEtsu?"_SU"]lI representation in an image projection (right). _MOSt
that it is physically possible to move the body from the catrelCiNts have 3 DOFs, except for the knee and elbow joints
pose to the proposed pose. (1 DOF)., spine joint and the clavicle joints (2 DOFs) and
To explicitly address realism of the poses generated bythae root joint (6 DOFs).
kinematic model we suggest to employ physical simulation.
Predictions made by our physics-based prior can then
seen as results of a post- ltering process built on top
the more traditional kinematic prior model. This post-ritey

e . . . .
Oﬁ)rces. Priors over force trajectories are notoriouslydhtar
Characterize, in part, because obtaining such trajestoie

process takes a kinematic pose produced by the kinemé{lecneral’ requires specialized equipmang( force plates and

o . ) : Otion capture data, exception being [6]). Due to sensjtivi
model (*desired pose’) as an input and outputs a physma_E])( measurements the obtained trajectories are also nuatlgric

feasible pose, close to the desired pose, by running pHysica o . .
simulation of the motion of the human body, guiding thE'one to_errors [[22], []36]. In addition, these trajectories

body's current pose towards the desired pose. A motic?rqe intimately dependent on the terrain, speed of exegution

controller is responsible for this guidance, through aggtlon muscle tone, and even age of the subjeci [12]. Consequently,

of motor forces exerted on the body, subject to biomechanigharaptenzmg and.stU(_jymg Such force trajectories istacen
active research in biomechani¢s|[55].

constraints and constraints in the environment. We model A . .
. We present results demonstrating ef cacy of our physics-
human body as an actuated articulated structure composed ; .
. . . .- based prior for tracking. We compare the performance of our
of three-dimensional rigid body segments connected bytgoin

whose motion is determined by the mass properties, gravi:tgethOd with other commonly used kinematic priors, yielding

. . . . gorable performance under the effects of dynamic human-
interactions among the segments or with the environment and . . . o .
environment interactions occurring in monocular and multi

actuation of the joints by the motion controller. In order toiew video. We qualitativelv and quantitatively demontsra
facilitate a better understanding of this model and promo}i@I ) d y q y

. . ; ; at the performance of our physics-based prior produces
use of physical simulation for tracking, we have made ttBa : . i
. . Detter tracking accuracy than standard smooth or kinematic
source code of our controller and the simulation-basedr prig ; . . )
. . . . . ' exemplar-based priors and is able to better generalizetaice
available on our project website http://brown-robotiogwp/ . L :
. . . new environments and physical interactions.
projects/current/dynamicgtacking/.
Our simulation-based approach has a number of bene ts
compared to the pure kinematic approach: (1) predictedspoge RELATED WORK
are implicitly biased towards physically plausible interfa- There has been a vast amount of work in computer vision in
tions and (2) reasonable predictions can be made even wiles past 10-15 years on articulated human motion trackirey. W
there is not enough training data available due to the dirdotus on a subset of relevant approaches here and referreade
incorporation of laws of dynamics. We chose to model motoo [17], [28], [34] for more complete review of the literagur
forces by using a motion controller, because doing so allowsMost approaches to human tracking to daté [2].][13],
us to avoid an explicit inference over motor force trajeie®r [44] have concentrated on development of ef cient infeenc
Consequently, in tracking, we only need to infer the dynaminethods that are able to handle the high-dimensionalithef t
state of the articulated body and information required fdruman pose. Generative methods typically propose to either
motion control, keeping the dimensionality of the statecgpalearn a low-dimensional embedding of the high-dimensional
manageable. kinematic data and then attempt to solve the tracking prob-
As a more generic but less tractable alternative, one coudan in this more manageable low-dimensional space [52],
re-parameterize the body motion completely in terms of motor, alternatively, propose the use of prior models to reduce
forces and avoid the use of motion controller and the kineamagffective search space in the original high-dimensionaktsp
motion prior. However, this parameterization would requir[13]. More recent discriminative methods attempt to map
inference and priors over the force trajectories. Suchrémfee directly from image features to the 3D articulated pose from
would be particularly problematic due to the high-dimensip either monocular imagery [40], [45] or features obtainemfr
discontinuous, and nonlinear nature of the space of motoultiple views [18].


http://brown-robotics.org/wp/projects/current/dynamical_tracking/
http://brown-robotics.org/wp/projects/current/dynamical_tracking/
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Producing smooth and accurate tracking results remainsnéerence using standard techniquesg( particle Itering)
challenge, especially from monocular imagery. In particul challenging. Consequently, we make use of an exemplar-
many of these efforts do not address physical plausibility based prior for the dynamics to limit the effective search
estimates and often result in recovered motions that \@olapace and allow tractable inference in this high-dimeraion
the constraints imposed on the body by the world or envirospace. Exemplar-based methods similar to ours have been
ment (producing out-of-plane rotations and foot skatexhSusuccessfully used for articulated pose estimation in [[EH],
artifacts can be attributed to the general lack of physical52], dynamically adaptive animatiori [63], and humanoid
plausible priors[[7],[[8] which can account for static and/orobot imitation [20].
dynamic balance and ground-person-object interactions. Our exemplar-based prior, discussed in the previous para-

Recently, priors that directly constrain kinematics witlgraph, can be thought of as an incremental trajectory cthetro
geometric constraints imposed by the environment have bdgi], where joint angle trajectories are de ned on a franye-b
introduced|[[37],[[38]. While shown to be effective, thes@opr frame basis from a database of motion capture data. As such,
models can only constrain the location of the body segmermtgr method also relates to a rich literature on controllsigle
with respect to the environment. For example, such modé{2]. While the use of our controller is dictated by simpjci
can encode a constraint that feet should not penetrate #ral convenience, other controllers can also be used indhis ¢
ground plane[[37] or that feet or hands must be in sontext to produce physically plausible motion. For examples o
xed con guration (as dictated by the environment) withcan use a set of key-poses with proportional derivative (PD)
respect to one another [38]. Such geometric priors are ramntrol [19], [61], [62], a learned low-dimensional coriteo
able, however, to allow dynamically plausible environnaént[39], or a combination of controllers [15] that individugll
interactionsge.g, encode that feet must be in contact with thdeal with properties of the desired motieng, balance (using
ground in such a way as to support the resulting motéa, Zero Point Moment[11] or otherwise [48]). Note that in such

The computer graphics and robotics community, on thEses one would typically need to infer full parameters ef th
other hand, has been very successful in developing realistontroller [7], [8].
physical models of human motion. These models for the most
part have only been developed and tested in the context2of Background: Human Tracking

synthesisi(e., animation [16], [[19],[[31],[3B].[39].[160],.[62], Tracking, including human motion tracking, is most often

[61], [57]) and humanoid r_ob0t|cE[ll.0]:[28]_,__ﬂ_47]:D59]._ formulated probabilistically using a Bayesian lter foriation
The key bene t of physics-based models in graphics a&[ﬂ!ﬂ. In computer vision literature such lters are usually

robotics has been shown to be the ability to use these mo %Iemented using a Particle Filter (PF). In PF fhesterior,

to plausibly re-target the Qriginal ki.nemati.c motions_tdnem p(Xijy1:f), Wherex; is the state of the body at framé

environments[33], dynamic interactions with the envir@m 5,4y, . is the set of observations up to and including the

[57], skeletal dimensions/proportionis| [9] and temporaé-eXframe f, is approximated using a set of (typically) weighted

cutions [27]. We conjecture that the use of similar mOde?ampIes/particles and is computed recursively,
in tracking would allow equally effective generalizations

beyond the scope of pure kinematic prior models. To this z zTipﬁrali' rzpiterﬁr i 1{
end, we propose a full body physics-based dynamical mOdF(Xf{JQ’l:fg M P(y{féxfg P(Xtjxs 1) P(Xf ajy1:f 1) dX¢ 1t
as a motion prior, for tracking, that accounts for physicall |, _ .~ Likelihood | _ _{Z : }
plausible environmental interactions. Predictive Density

Earliest work on integrating physical models with visionin this formulation,p(xs 1jy1:f 1) is the posterior from the
based tracking can be attributed to in uential work by Metax previous frame ang(y¢jxs) is the likelihood that measures
et al. [30] and Wrenet al. [56]. In both [30] and [[56] a how well a hypothesis at framé& explains the observations.
Lagrangian formulation of the dynamics was employed, withiThe p(x¢jx; 1) is often referred to as thetemporal prior,
the context of a Kalman lter, for tracking of simple (noor motion mode] and is the main focus of this paper
contact) upper body motions using segmented 3D markerThe temporal prior is usually modeled as a rst or second
[30] or stereo|[[55] observations. In contrast, we incorpwraorder linear dynamical system with Gaussian naise [2]] ,[13]
full body human dynamical simulation into a Particle Filterf44]. For example, in[2], [[13] the non-informative smooth
suited for multi-modal posteriors that commonly arise frorrior,
ambiguities in monocular imagery. More recently, Brubaker p(xsjxs 1)= N (Xt 1;9); (1)

etal. [Z], [B] introduced a low-dimensional blomechamcally—which facilitates continuity in the recovered motions, was

inspired model that accounts for human lower-body walkin ked: alternativelv. constant velocity temporal priorstiof
dynamics. The low-dimensional nature of the modeél [7], [ rm', Y y P P

facilitated tractable inference; however, the model, &/lpibw- . ) _ e
erful, is inherently limited to modeling dynamics of walkin pOxrixt 16 )= N (Xt 1+ o 1;S); 2)
motions in 2D and resorts to conditional kinematics to allowheregs 1 is scaled velocity learned or inferred.¢, gi 1=
tracking of walking motions in 3D and allow turning. Xf 1 Xf 2), have also been proposéd|[44] and shown to have

In this work, we introduce a more general full-body moddhvorable properties when it comes to monocular imagery.
that can potentially model a large variety of human motionklowever, human motion, in general, is non-linear and non-
However, the high-dimensionality of our model makes direstationary.
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Decision Procesg

given pose, output desired
kinematic pose

[a,,&].a,_

Mo'!on Control

given desired pose,
output motion constraints

1) Sflect policy,
2" (d;.G)=>

| B,

We run our simulations in a world model consisting of
a known static environment3, and a loop-free articulated
structure (@ure) that represents the subject (Figlide 2). We
assume “physical properties” (mass, inertial propertnebel-
lision geometries) are known for each rigid body segment. Ou

dq DD

(Ao &] [q,,&],m predictions are produced_ by a I_terin_g process_that taked ne
S Dynamics pose p_roposals from a kinematic prior as an |npu_t. Proposed
: : _ , predictions are corrected throughmulationof the articulated
(A&l el O e to body towards the proposed poses. The corrected poses are,
P by de nition, physically valid and transitions between the
Qb & 8.4 g, M5 physically feasible. We abstract kinematic priors by cohtr

policy functions. Control policy functions map current pes

to next intended poses and implicitly encode intentions (or
objectives) of the subject. We permit a collection of (pblsi
motion-speci c) control policies over a variety of objeas
and allow inference over which policy to use at any given time
For example, the system can incorporate two different jadic
for actuated motions (actions), one for walking and another
one for jogging, or, it can provide one policy to account
for voluntary motions and another for involuntary (pasyive
body responses. We switch control policies probabilififica
(optionally) conditioned on simulation event feedbaek,

) ) ~ Pose inference in our framework takes the form of a
For this reason, more recently, it became customary tore'”}?article lter (see AlgorithnL) with the motion (lines 39,

model human motion as a mixture of linear models in th§ectior13]2) likelihood (line 12, SectiGnB.3) and noisecd
original high-dimensional state space |[32] or by learning & 5nq 10, Sectioi3.4) models explained next.
explicit non-linear low-dimensional embedding of kinemsat

[23], [26], [4€], [50], [51], [52] (or mixture of low-dimerienal ‘Algorithm 1 Update particle set for the next frame

linear embeddings[[25]). The latter class of models often _ X X RN

takes a form of Gaussian Processes Latent Variable Mod#lgut: Weighted particle sefx;”;wi’giz, for frame f and
(GPLVMs) [50], [51], [52]. Consequently, to learn effeativ.  geometry of the scené (notex'” =[q{;q"; u"))
Iow—d|men3|on_al latent representations, GPLVM_-basedefmd Output: Weighted particle seftx(f'l 1iW(fI1 LGN, for f+1
are often restricted to particular classes of motierny( walk- e 1N o 166 x0-l) gN

ing [51], golf swing [52]). While these models have shown tol TX¥iRGi=1 = resampléi X" wi gz )

be effective kinematic priors, and are able to be trainedhfro

Fig. 3. Motion Model: Control Loop. Each iteration
advances the gure state [q;q;u] by time Dt by (1) gen-
erating a desired kinematic pose qgq for the gure to follow
(decision process), (2) constructing corresponding motion
constraints m for generating motor forces (motion control)
and (3) applying forces on the gure, as determined
by m (dynamics). Event feedback information e records
collisions with the environment and affects selection of the
control policy for the next iteration.

2: fori:= 1toN do

oo~
small datasets [52], they are inherently unable to explicit & UE) - Athen_ »
model the physical aspects of human motiery( consistency ~ 4: qa == pAIE;a]) /I predict desired pose
with gravity, balancegetc) Furthermore, it is hard for such 5: qd+= hg /I 'add noisehy N (0;Sqy)
models to generalize to different environments. For exampl 6:  else
if the kinematic prior model is trained on the data of a persory: Qg == 0
walking on level ground, it may generalize to other peoples: endif o
walking on level ground with different styles or speeds] [51] 9: [q(fli 1;q(f|3. 1€ = SimU|at€([q(f');q(f')];qd;G)
but it would not be able to generalize to a person walking ug. [q(fil l;q(fil J+= hs /I add noisehs N (0;Ss)
the stairs, as discussed in the results. 0} (i) :~Q).

/I sample next policy
/I image likelihood

11: ugyq  p(uslqjag’;e)
: (. irgl . oM
3 TRACKING WITH DYNAMICAL SIMULATION 122 Wiyq o= P(Y+2)[0%4 1054 1)

. . . L - . 13: end for
Dynamical Newtonian simulation is explicitly suited as a

temporal prior (motion model) to address physical realism

in predictions. Temporal priop(x¢jxs 1) encodes temporal

relationship between states and implicitly approximatesges- 3-1 Body Model and State Space

lying processes that govern the motion represented by th&sgure state captures information about the pose and dontro
states. We assume that true human motion is determineddnficy and is represented by a vector=[q;q;u], where
dynamics and a feedback-based thought process that tag@sR3! is kinematic pose of the body 2 R3! is the time

the actuation of the body (through muscles) such that disirerivative of the kinematic pose (velocity), ands a discrete
motion would be performed. Our physics-based motion modékenti er designating the control policy currently in use.
idealizes this concept by assuming that the thought praaess Our gure (body) consists of 13 rigid body segments and
be abstracted by a discrete feedback control loop illustrat  has a total of 31 degrees of freedom (DOFs), as illustrated
Figure[3. We use this loop to draw samples from the prior.in Figure [2. Segments are linked to parent segments by
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either 1-DOF (hinge), 2-DOF (saddle) or 3-DOF (ball and 005 | 0o N0 o
socket) rotational joints to ensure that only relevanttiotes Error G(nmm) || 32.1 | 30.2 | 35.0 | 37.1 | 38.3 | 70.8

about speci c joint axes are possible. The root segment is

“connected” to the world space origin by a 6-DOF globa+

“joint” whose DOF values de ne the global orientation and

position of the gure (body). The values of rotational joint

DOFs are encoded using Euler angles. Collision geometries

attached to segments affect physical aspects of the motigg, a simpler alternative to constraints, the motion coterol

while additional segment shapes de ne visual appearancec@uld generate motor forces directly leyg, a proportional-

the segments and have an impact on the evaluation of #rivative servd57].

likelihood discussed later. In order to optionally allow the control process to react to
Joint DOF values concatenated along the kinematic tregternal events” that took place during simulation, weorec

de ne thekinematic posgq, of the body. Joint DOF velocities, event feedback informatioe, from the simulator and use it in

d, de ned as the time derivatives, together with the kinematthe decision process to help choose the control policy fer th

poseq determine thelynamic poséq; q]. The pose is consid- next time step (see Section 3.2.1). We currently restricselfi

eredinvalid if it causes self-penetration of body parts and/ab modeling reactions to unanticipated heavy impaetg,(as

penetration with the environment (detected by the simdfatoin Figure 13) that are unlikely to be represented well in the

collision detection library), or if the joint DOF values areraining motion capture set. Hence, our feedback inforomati

outside of the valid ranges that are learned from the trginigonsists of only a binary indicator variable recording viest

motion capture data. These constraints on the kinematie p@se body has collided with the environment, detected when a

allow us to reject invalid samples early in the Itering pess. relative velocity at a body contact exceeds a threshold of 1
Control policy u identi es the policy function to be used m=s during simulation.

for generating next pose proposals. The policy funcidn

[g;0] 7! qq determine_;s the next desired (intended) kir1_emat§2_1 Decision Process

poseqq that the subject attempts to reach frggaq] during . . . .
simulation and is typically obtained by sampling from ar he deC|§|on process in the controllloop is responsible for
associated kinematic motion prior. We implement two cdntrél) @PPlying the current control policy to propose a next
policies, anactive motion policy @) for actuated motions, Inténded kinematic posg, to be corrected by simulation and
whereqq is obtained from kernel regression on training motiok?) detérmining which policy the current policy should st
capture data, and passivemotion policy @) for unactuated t© after the simulation completes, utilizing the event fesrk
motions, where no particular desired pose is proposed dRPrmation from the simulation. We switch policies by a

consequently no motor forces are applied during simulatiopfochastic process in which the new poligy. ; is sampled
Consequentlyu 2 f A;Pg is binary (see Section 3.2.1 andfom simplep(ut+ 1jus;€) distributions that do not take pose or
Figure 4 for illustration). velocity information into account. In practice, we assuima t

p(usr+1= Alus = Aje= 0) = p(us+1= Alus = Pe= 0) and

estimate the value of(us+1 = Ajus;e=0)= 1 p(us+1=

Pjus;e= 0) = 0:9 using cross validation. The behavior of the

Sampling from our physics-based motion prior is realizegacker as a function gf(us+ 1= Ajus = A;e= 0) is illustrated

by executing the control loop. For every state hypothesdis Table 1. The value af(us+1= Ajus = Aje= 1)= p(Us+1=

x =[qg;q;u] at one framé one loop iteration is taken to Aju = Pe= 1) is set by hand as in our data impacts of desired

produce a hypothesis at the next frame, as illustrated imagnitude happen very infrequently and hence learningn(eve

Figure 3 and Algorithm 1. using cross-validation) is inconclusive. Motivated by |[6@
The update procedure uses the current control policy furlet p(us.1 = Ajus;e= 1)= 0.

tion pY to propose the next desired kinematic page= . ) . ) )

pU([g;q]) for the gure to approachdecision processsee Passwe motion P). This .pollcy applies no mqtor forces, as

Section 3.2.1)Dynamics simulatiorfsee Section 3.2.3) Iters if the gure was unconscious. As a result, og is generated

this pose to be physically valid by performirgpnstrained and no a_ctuat|0n takes place when the pollcy is in effect. _Its

rigid body simulationof the motion of the subject, guidingPUrPose is to account for unmodeled dynamics in the active

its current posgq;q] towardsqg, subject to biomechanical moFlon polu;y and it should typlca}lly. be activated for short

and environment constraints, dictated by the scene gepmdigriods of time or when the body is in the free fall.

G. The guidance is realized through application of apprmpriaActive motion (A). Our active motion-capture based policy

rr:cotor _forces, gelnerated _|mpI|C|tIy bithi S|ml_JIator frorrITem Sgenerates desired kinematic poses so that the proposeoimoti
of motion control constraints) set up by thenotion controller 14 |50k similar to training motion capture. We take an

(s_ee Se_ction 3.2.2) frorfg;q] and dg. In_ca_se no desired exemplar based approach resembling [20], [40], [63] and
Kinematic pose was proposed by the poliey= 0, no motor extend it to work with dynamic poses. To that end, we rst

forces are generated and the subject is let move passiv? m a database of observed input-output pairs (from tngini

1. Where unnecessary, for clarity of notation, we omit seiipss for frame motion _captur(_e data) between a dynam'c pose at frdme
identity and super-scripts for hypothesis identity. and a kinematic pose at franfe+ 1, f[q;;0;]; 0, 197=,. FOr

TABLE 1
racking errors as a function of p(uf+1 = Ajus;e= 0) (L1
walking). For details on the error metric see Section 4.

3.2 Motion Model and Control Loop
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[5], [45]. The former is closely related to kernel regressio
but in addition produces the measure of uncertainty for
the prediction; the latter allows for multi-modal predacts.
Because we are conditioning on both the kinematics and
velocity information, the multi-modality does not seem to
be as abundant as with pure kinematic models [5], [45].
Furthermore, as with traditional kinematic motion pridtds
reasonable to assume that the underlying degrees of freedom
are much lower than those encoded by the full kinematic
state. With that in mind, low-dimensional motion prioesd,
Latent Variable Gaussian Process Latent Variable Mod®&lg [5
[51], [52] or Mixture of Factor Analyzers [25]) are likely to
facilitate more ef cient inference methods. The use of such
Fig. 4. Control Policies. Predictions made by the control latent variable models in this context remains future work.

loop from a given initial dynamic pose (top and bottom
left) for a time duration of 2 seconds. The top row shows 3.2.2 Motion Control
poses generated by the active motion policy, the bottom The motion controller conceptually approximates muscle ac
row shows the poses generated by the passive policy. tuation of the subject to move the body from the current pose
[g;q] towards the intended kinematic pogg when the state
is updated by dynamics. Becausg is generated using a
pose invariance to global position and heading, corresipgndstatistical model, kernel regression, it is not guaranteebe
degrees of freedom are removed frgmandq;. free of self and world penetrations. Motion control, togeth
Given this database, that can span training data framith physical simulation, is responsible for resolving she
multiple subjects and activities, and a new query dynamignetrations and producing a new pose for the body model
pose|[q;q], our objective is to determine the next intende¢hat is close togy and can be physically reached from the
kinematic poseqq. We formulate this objective as in [40]current pose. We formulate motion control as a set of soft
using ak nearest neighbors (k-NN) kernel regression methodagrange multiplier-based constraints [4] gnand g that
where a set of similar prototypes/exemplars to the queimplicitly yield actuation forces. Each constraint is dedh as
point [g;q] is rst found in the database and then tlig an equality or inequality with a softness constant deteimgin
is obtained by weighted averaging over their correspondinghat portion of the constraint force should actually be &upl
outputs; the weights are set proportional to the similaoity to the constrained bodies. Magnitudes of actuation fore@s c
the prototype/exemplar to the query point. This inferenae cbe bounded to account for biomechanical properties of the

Active (4)

Passive (P)

be formally written as, human motion, like muscle power limits or joint resistance.
1 o Unlike traditional constraint-based controllers [21] ttio:
4=z a K(di([ds;a¢];[a;a]) dis1; (3) rectly constrain and track both linear and angular DOFs ef th
[a¢:9¢]2neighborhoot;q] gure, our objective is to constrain only the angular quaes

so that the trajectory traced by the root segment would resul
similarity measure anH{ is thekernelfunction that determines from interactions with the environmeéntiowever, control that

: : : tracks joint angles alone is problematic. One of the prob-
:Jhoein\t/velght falloff as a function of distance from the quer}ématic cases is illustrated in Figure 5 (right) and (boftom

We use a similarity measure that is a linear combination ﬁf?er';é?;re tgeg Ci:uejs\ilr\:gerpeertlr;?ra?ii?rs\filthkl?ﬁerngﬂ(\:/irrclﬁsnint)
positional and velocity information, Leaving the linear DOFs unconstrained, in this case, often
di([as;0¢);[0;a]) = w dm(g;9¢)+(1 w) dm(g;q¢); (4) leads to unexpected toe contacts/impacts with an envirome

o during simulation which can affect the motion adversely: Fo
wheredy () denotes a Mahalanobis distance betweeand example, impacts at the end of the walking cycle (see the
q¢, and g and qy, respectively with covariance matric€§mpact of the right foot in the middle frame of Figure 5
learned from the training datéq gt , andf qgf. ,; the value (hottom) will force the gure to step back instead of fonaar
of w= 0:9 accounts for the relative weighting of the two terms 1o address the above mentioned problems, we propose to
and is determined empirically using cross-validation. & se a hybrid constraint-based controller (see Figure 6) tha
kernel function, we use a simple Gaussiis N (0;s), With  can track both desired joint angle trajectories as well as
empirically determined variance?. trajectories of selected points on surface geometry of tuy b

The method discussed above can be interpreted as a fQHE; we generally refer to as markers. We use this contrigter
of a more traditional kinematic prior learned from a dat&bas
of motion-capture exemplars. While we opted for a simple 2. We constrain the orientation of the root segment in ordeémplement
and robust approach with kernel regression, other remss§|mple balancmg. AIth_ough this form of balancing is not gicglly correct,
. . . as the gure's orientation can change regardless of the aigmpm the rest
methods can be used in this context; for example, GaUSS@l{he body, this strategy allows us to make longer-time igtEghs required

Processes Regression [35] or Conditional Mixture of Exgeriy some of our experiments.

whereZx is a normalizing constant([d;;0;];[q;q]) is the
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Hybrid Controller Proposed hybrid controller (zoom) Traditional Controller

Traditional controller (zoom)

Fig. 5. Locomotion. Comparisons of motions generated by a traditional DOF tracking controller (right) and our hybrid
controller (left) when the controllers follow the same trajectories speci ed by the motion capture data. Impacts betwe en
the right foot and the ground plane (see the middle frame of the zoomed bottom animation) prevent the traditional
controller from performing the motion correctly, resulting in the undesired step backwards, making the gure stay to
the right of the camera view. Our hybrid controller on the other hand (see the zoomed top animation) is more robust
to such unexpected collisions with the environment, allowing the body to faithfully follow the desired motion.

tracking desired positions of toes (computed with respect t
the desired kinematic posg using forward kinematics) that
we adjust in order to avoid penetrations with the environimen
Consequently, our markers are attached to the locatioroesf t
and the controller's tracking objectives are

2 o= (@ Z) (5)

k - K kye

q° = ¢ (d° dq); (6)

wherez! are the locations of the tracked toe markpestached

to the gure body,zé are their corresponding corrected desiregig. 6. Motion Controller. Input kinematic pose q de-

locations,k are the tracked angular DOFs aogl> 0;c, > O termines the positions z/ of markers on the feet (1),

are controller parametérsletermining how fast the controllerthe desired kinematic pose qq their desired positions zé

should approach the desired values. (2). Desired positions are adjusted to prevent penetration
Ideally, we would like to submit these objectives as comwith the ground (3) and constraints on the marker world

straints for the simulation step. However, in our constraispace velocities z/ and relative joint DOF velocities g*

model, these objectives can not be satis ed directly. There formed. Finally, constraints are solved for desired

marker tracking objectives prescribe desired values fer thielocities qq using rst-order inverse dynamics (4) and the

marker velocitiesz) in the global frame and, consequentlyyelocities are followed during simulation.

could be satis ed by changing the velocity of the root segimen

resulting in undesired motion. To avoid this problem, we add

an additional step that uses inverse dynamics to reformulat> 3 pynamical Simulation

the objectives. In this step we augment our objective set by
Dynamical simulation numerically integrates the dynantse

q°t = (g% (7)  [qg;q] forward in time for the time duration of one framig
d duwn ;9 G (8) seconds, following Newtonian equations of motion and a set
of active motion constraints Active constraints honored by
where root refers to the gure root segments linear andhe simulator are the explicit motion control constraints
angular DOFs(q™®)¢ are the root segment's current DOFprovided by motion controller, soft position constraintsrf
values,i iterates over the remaining angular DOFs angd, Eq. (8) implementing joint angle limits and implicit velbgi
andqp,y are the corresponding joint angle limits, learned frorgr acceleration constraints enforcing body non-penetnatid
the training data. The objective (7) xes the velocity of th®t modeling friction. Because motion control constraintsare
Segment such that the actuation of the bOdy due to the trngvahd 0n|y with respect to a Speci C dynamic pose, the con-
objectives (5), (6) can not be realized by directly actugtite  straints have to be reformulated each time the state isialtgr
root. We use rst-order inverse dynamics, implemented [ thpdated by the simulator. As a result, motion controllerlsan
physics engine, to solve for the angular velocitigsof the called back throughout the simulation process, which issill
gure consistent with the augmented objectives and folloyated by the corresponding arrows in Figure 3. For simaifati
these velocities during the actual simulation by requgstin e use Crisis physics engine [64]. The simulator's collisio
e i i detection library is used to check for body penetrations.
m=fq = qq0 9)

4. Derivation of equations of motion for the articulated paahd the general
3. We manually set; = 0:5 andc, = 0:2 so that the controller can replay discussion of constraint-based control is beyond the sobpkis paper and
training motions in simulation. we refer reader to [53] for details.
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3.3 Likelihood Model

The likelihood function measures how well a particular hy-
pothesis explains image observations. We rst de ne likeli /‘

hoods for kinematic poses and then extend the approach to * - T
handle dynamic poses by considering velocity information. - P

09%:100%-30.3 68
80| ——25%:75%-32.1 £6.5
———50%:509%-30.0 £7.2
60 759%:50%-32.8 +8.6
100%:0%- 406 +12.2

Average Error (mm)

Kinematic Poses For akinematic poseqs, we employ a Fig. 7. Tracking errors for different noise distributions
relatively generic likelihood moded(l jq¢) from [1] that tries (L1 walking). Effects of different ratios of noise added to
to maximize the similarity between the projection of the mlod desired poses vs. to predicted poses on tracking errors.
and the observed silhouette extracted from the inage All cases produce similar tracking results, except for the

case 100 % - 0 %, when all noise is added only to the

Dynamic Poses For a dynamic pose[qr;dr], we need t0 gesjred poses and the tracker can not x global translation
consider information extracted from both the current arel thyrors until the end of the stride.

next frame so that velocity information could be implicitly

measured and compared agaiggt Towards this end, we
set up thecoupled observatioys =[1¢;1t+1] and de ne the  In practice, neither of the two assumptions holds exactly.
likelihood of the dynamic posewith respect to the coupled In particular, often, because of the noise in the image ebser
observation as a weighted product of two kinematic likeditt® vations, the moment when the foot hits the ground cannot
_ _ R be observed well using the implemented likelihood. As a
p(ytilas;as]) b p(lejae)p(l e+ 1jdt+1); (10)  result, foot sometimes hits the ground too early (or too)late
requiring the model to either take a longer or shorter step to

where §s+1 = qf + Dt gy is the estimate of the kinematic ; . .
state/pose at the next frame. Alternatively, one can foateul compensate and keep up with subsequent image observations,
' or to lag behind for the duration of the walk cycle (until

a likelihood measure that explicitly computes the velocitg ‘1 f Both It b-optimal perf
information [7] (.g, using optical ow) and compares it to uppor rans_ers). oth resuftin sub-optimal periorneanc
the corresponding velocity components of the state vector. As a practical compromise, we take_ a hybrid approach,

The remaining portions of our state, such as the con- where we add a fractioSy of required noises to the desired
trol policy, are inherently unobservable and are assumBf>¢€ (see AIgothm L I|r_1e S)gndqfrgctlﬁgto th? prgdmted
to have uniform probability with respect to the IikelihoooState (see Algorithm 1, line 1Q)As is illustrated in Figure 7

functiorf, hence we de ne our likelihood functiop(ysjxi) (see experiments for description of dataset and error o)etri
as p(yfjx'f): o(ysilar:arl) this strategy results in a plausible compromise between the

physical realism and the ability to subdue the confusion tha
arises from lack of good image observations. It is worthngpti
3.4 Noise Model that even though the resulting motion cannot be guaranteed t

The motion model outlined in Section 3.2 is inherently detebe physical simulation from our model, it ieery strongly

ministic. In practice, however, as with any Bayesian Itegi hiased by the model towards physically plausible solutions

method, one requires noise (or diffusion process) to adco because the amount of noise is relatively small with respect

n o -
for disturbances and subtleties of a particular motion @eiﬁo the deterministic prediction.

tracked. In kinematic trackers, such as [2], [3], [13], [23]
[26], [44], it is customary to perform deterministic preiiten 4 EXPERIMENTS

rstand then directly add noise to the predicted stafdding We evaluated our method both in terms of its ability to track

noise to the state, in our case, would result in (to some 8&xten . N .
common human actions from monocular and multi-view video

the loss of physical realism, because the recovered motion : :
. . : . Q e Table 2) as well as to predict human motion alone.
trajectory, in general, cannot be simulated by the physmiﬁe

model exactly. Alternatively, to ensure the realism of rezed
motion, the noise can be added to the desired kinematic poges Data Sets and Performance Metrics

da, before the m_otion co_ntrol and Qyngmic_simulation t_akelﬁatasets In our experiments, we make use of two publicly
plac_e (see Algo_rlthr_n 1, line 5). While, in pnncu_ale, thl_sas available datasets [2] and [41], containing synchronized m
desired alternative, it assumes that (1) our physical gt .. n capture (MoCap) and video data from multiple cameras.

o ) ; ti
is rich enough to generate the motion we are observing @xac\;ﬁe also collected our own custom monocular sequences that

and (2) that t_he likelihood model is str_ong G_nough 10 enSUBntain no associated MoCap. The use of the synchronized
that the_physmal state of the syst_em (including C0mame);tadata, in the former datasets, allows us to (1) perform baseli
can be inferred accurately at all imes. experiments that quantitatively analyze performance,of)

. . _ tain data for training the motion and noise models and to (3)
5. The resulting dual-counting of observations, only matkesunnormal-

ized likelihood more peaked, and can formally be handlechd3]i get reasonable initial poses for the rst frame of the segeen
6. Most often, the deterministic motion model is an idenfitpction q; =
gs 1 and state diffusion is implemented by replacing the predigt with a 7. We set the standard deviation $1to be proportional to the maximum

sample fromN (q¢;S), where the covariancg controls the amount of noise expected difference in state between the deterministidigtien and the true
added. observation as in [2], [13] and &= rSqy+(1 r)S; for a factorr.
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. . c e . . Subject  Action Source | # Cameras| # Frames| Section
fr_om_whlch t_rackmg is |n_|t|ated. Each public dataset <_:<mnia T Walking 2] 7 00 73
disjoint training and testing data, that we use accordingly | s3 Jogging || [41] 4 200 4.4

) ) ) ) L1 Walking [2] 1 200 4.5
L1. The rst public dataset, used in [2], contains a singless3 Jogging [41] 1 200 4.6
subject (L1) performing a walking motion with stopping| M Stairs | Custom 1 150 4.1
. . M Jumping || Custom 1 35 4.8
imaged with 4 grayscale cameras.
TABLE 2

S1 - S3 The second public dataséiuymManEvA-I [41], con-  sequences and data sets used in tracking experiments.
tains three subjects (S1 to S3) performing a variety of nmatio

(e.g, walking, jogging, boxing) imaged with 7 cameras (we
however, make use of the data from at most 3 color and
grayscale cameras for our experiments).

otion of the root; rather it relies on the sampling covac@an

of the noise model for the positional degrees of freedom ef th
root segment. To make the comparison as fair as possible we
M. The custom sequences contain monocular footage oBlays use the same number of particles, 250 for multi-view
subject (M) exhibiting more complex dynamical interactonsequences, 1000 for monocular sequehcsame likelihoods,
with the environment like walking up the stairs and jumpin§ame noise model and same interpenetration and joint limit
of a ledge. The footage was taken by a low-quality stodkonstraints in all cases; joint limit constraints are leafrom
digital camera for which no ground truth MoCap informatiofraining data.

is available. The images were captured at 6480 resolution

at 30 frames per second. Due to the low quality of the camera ) o ) )

some of the frames were dropped, resulting in a variatffe? Motion Prediction with Ground Interaction

frame rates as low as 15 frames per second. Rough cam@i rst evaluate the proposed motion model (see Section 3.2)
calibration was extracted directly from sequences. Gegmegjone. The key aspect of our model is the ability to perform
of the environmenté.g, ground plane, stairs) was built byaccurate physically-plausible predictions of the fututates
hand based on the recovered calibration. For each sequemg@ed on the current state estimates. We demonstrate this
initial poses and parameters of the body model (limb lengthgyility through quantitative comparisons with predicganade
were tuned manually. In all cases, the MoCap for training Ly the standard temporal prior models based on stationary
sequence was used to train motion priors for the M sequendgear dynamics (described in Section 2.1) and exemplaeta

Performance metrics To quantitatively evaluate the per_pre(j|ct|ons. ) )
formance on standard datasets we make use of the metriEigure 9 (right) shows performance of tamoothprior (No

employed in [2] and [41], where pose error is computed ggediction, see Eq. (1)gonstant velocityprior (see Eq. (2)),

an average distance between a set of 15 markers de ned<i¢matic motion capturerior (see Eq. (11)) and individual
the key joints and end points of the limbs. Hence, in gpredictions based on the two control policies implemented
this error has an intuitive interpretation of the averagatjo Within our physics-based prediction module. For all 5 meho

distance, iniim), between the ground truth and recovered pod¥® use 200 frames of motion capture data from the L1
(absolute erro). In our monocular experiments and speci €duence to predict poses fromd® to 05 seconds ahead.
motion model experiments, we use an adaptation of this erfff Make sure the experiment results are not biased by the
that measures the average joint distance with respect to S{ieCts of the noise models, we only use deterministic prior
position of the pelvisrélative error) to avoid biases that mayWlth S=0. We then compare our predictions to th_e POSES
arise due to depth ambiguities and to avoid penalizing céiotOPServed by motion capture data at corresponding times and
competing motion priors that do not model changes in 3f§POrt prediction errors.

position and orientation of the body. For tracking experitse  FOr short temporal predictions all methods perform well;
we report the error of the expected pose. however, once the predictions are made further into thedytu

our activemotion control policy, Itering predictions from the
Method comparison For comparison with our Physics-base@éxemplar-based MoCap method, signi cantly outperfornes th
method Physicy, we implemented two alternative standar¢ompetitors. Overall, the active control policy achieves9a
Bayesian lItering approaches, Particle FiftefPF) and An- ower error over the constant velocity prior (averaged dler
nealed Particle Filt&rwith 5 levels of annealingAPF 5), range of prediction times from:05 to Q5 seconds).
each with two priors: a smooth prioSooth) and a kine-  Figure 9 (left) shows the effect of noise on the predictions.
matic motion capture exemplar priavipcap). The kinematic For a xed prediction time of (5 seconds, a zero mean
motion capture prior takes the form of Gaussian noise is added to each of the initial ground truth
. . . dynamic poses before the prediction is made. The perforenanc
plarar 1:ar 1) N (q(i’ S) isythen mpeasured as a quction of the noise varignce. While
N (p"([ar 1:ar 1]);S): (11) performance of the constant velocity prior and passive onoti

For uniformity with the implementation of our motion Con_prior.de_grade with noise, the performance of our active amoti
troller, the kinematic motion capture prior does not pretie  Prediction stays low and at.

8. We make use of the public implementation by Baddral[2] available 9. In APF, we use 250 particles for each annealing layer intingigw
from http://www.cs.brown.edu/people/alb/. sequences and 1000 particles for each layer in monoculaesegs.
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200

Relative Error (mm|

Frame: 127

Fig. 8. Prediction Error. Errors in predictions (0:5 seconds
ahead) are analyzed as a function of one walking cycle.
Vertical bars illustrate different phases of walking motion:
light blue — foot pushes on the ground, light orange —
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Passive Physics - 199.0 + 46.2
Active Physics - 75.9+ 20.8
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change in the direction of the arm swing.

Relative Average Prediction Error (0.25 seconds ahead)

Relative Average Error (mm)

Absolute Average Prediction Error (0.25 seconds ahead) Absol
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Fig. 9. Average Prediction Error. lllustrated, on the right,
is the quantitative evaluation of 5 different dynamical
priors for human motion: smooth prior (No Prediction),
motion capture based prior without physics (Motion Cap-
ture), constant velocity prior and (separately) active and
passive physics-based priors implemented here. On the
left, performance in the presence of noise added to initial
ground truth poses is explored. For completeness, top
row shows the relative error and bottom absolute error
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10
Test: L1 Test: L1
Train: L1 | Train: S1-S3
Our method 30.3 mm 47.2 (mm
Our method ([58] likelihood) 33.9 (mm 52.4 (mm)
Xu and Li [58] 49.0 (mm) 55.3 (nm)
PF (smooth prior, [58] likelihood) 120.7 fam
PF (smooth prior) 80.0 mm)
APF 5 (smooth prior, [58] likelihood) 63.5 Mm
APF 5 (smooth prior) 42.8 (mm

TABLE 3
Comparison with other methods (multi-view L1 walk).

predictions of passive motion model tend to be more accurate
when foot strikes the ground. Consequently, when change in
the direction in the arm swing occurs, inertia tends to allow
the motion to continue in the initial direction, making pass
motion model predictions less accurate.

4.3 Tracking with Multiple Views (L1 walking)

As our rst tracking experiment, we analyze the tracking of
the multi-view sequence of L1 (see supplemental video for
qualitative analysis). The quantitative results are itlated in
Figure 11 (top left). Our method has 63 % lower error than PF
and 27 % lower error than APF with smooth prior; 59 % lower
error than PF and 18 % lower error than APF with kinematic
motion capture prior. In all cases, our method also resuited
considerably lower variance.

We have also tested how performance of our method de-
grades with larger training sets that come from other sibjec
performing similar (walking) motions (see Physics S1-S3.L1
It can be seen that additional training data does not ndilgea
degrade the performance of our method (only hg éhm
on an average), which suggests that our approach is able to
scale to larger datasets with multiple subjects. We alsb tes
whether or not our approach can generalize, by training on
data of subjects from BMANEVA-I dataset and running on
a different subject, L1, from the dataset of [2] (Physics S1-
S3). The results are encouraging in that we can still achieve
reasonable performance that has lower error than PF with
either of the two alternative priors, but performs mardinal
worse than APF with smooth prior. Comparison with APF
using kinematic motion capture prior is not meaningful irsth
case because it is trained using subject speci ¢ motion data
of L1. Our experiments tend to indicate that our approach can
generalize within observed classes of motions given sahti
amount of training data (for generalizations to execution i
different environments see Sections 4.7 and 4.8).

We also compare performance of the Bayesian tracking

Notice that in both plots in Figure 9 (right) the constantethod with our physics-based prior to that of [58]. In [58]
velocity prior performs similarly to the passive motion: ina more informative kinematic prior model was proposed (as
tuitively, this performance makes sense because the ctnstaompared to the smooth prior), that explicitly learns clarre
velocity prior is an approximation to the passive motiotions between parts of the body in coordinated motiemy(
dynamics that does not account for environment interastionwalking). This prior is then used in the context of a more
Because such interactions happen infrequently and we efeient Rao-Blackwellised Particle Filter (RBPF). In [h8
averaging over 200 frames, the differences between the thvowever, a weaker likelihood model was used (which we
methods are not readily observed, but are important at temployed in an earlier variant of this work [54]), so we repor
key instants when they occur (see Figure 8). For exampferformance with both types of likelihoods (see Table 3js It
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Mean (std.) in fhm) o]
Our method 71.5 (19.7) >
APF 5 (250 particles/layer) 132.5 (35.5) E’ "q_ lq ;q ,Q [Qr wg\ ?\ %\
APF 5 (500 particles/iayer) [24] 111.82 (47.91) = A L - . AT A ¢ G v 1 T
APF 5 GPLVM (500 particles/layer) [24 99.05 (21.90)
MHT GCMFA [24] 70.13 (21.34)
TABLE 4 v g o g 8 8
Comparison with other methods (multi-view S3 jog). E S )q iq ‘_q ,'q L |
ZE . i l
ioni i i & o g 8 § ?
also worth mentioning that in [58] 1000 particles were use § 5 .ﬁ ,f? A "\ ) )

instead of 250 here; yet our method still performs favorablg=
Furthermore, from the table one can see that while the models
that utilize smooth priors tend to be very sensitive to the
quality of the likelihoods (gaining over 30 % performance
increase with the better likelihoods utilized here), ourdeio

is much less sensitive to those aspects.

Physics

4.4 Tracking with Multiple Views (S3 jogging)

To illustrate that our method is not limited to motions ofs

any particular type €.g, walking), we conducted a similar &

experiment to above but on the jogging sequence of subject S3”?

from HUMAN EVA-1 dataset. All the parameters of the tracker

are set as above except that the prior was trained on joggipg.

sequences of the subject S3 (disjoint of the test set). Perfg, §

mance on sample frames is illustrated in the supplemen@lg

video and quantitatively analyzed in Figure 11 (bottom)left

The proposed model once again achieves lowest error against

all competing methods. Fig. 10. Monocular Tracking (walking). Visualization of
We also compare our performance on this sequence to otA@fformance on a monocular walking sequence of subject

methods published in literature (see Table 4). In particuld-1. lllustrated is the performance of the proposed method

to the results reported in [24], where a Multiple Hypothesi€hysics) versus the Annealed Particle Filter (APF 5) with

Tracker with a kinematic Globally Coordinated Mixture ofsmooth and kinematic motion capture prior; in all cases

Factor Analyzers (MHT GCMFA) prior was presented andith 1000 particles. The top row shows projections (into

compared to an independent implementation of Annealdfte view used for inference) of the resulting 3D poses

Particle Filter with 5 layers of annealing with (1) smootliopr at 20-frame increments; bottom shows the corresponding

(APF 5) and (2) kinematic Gaussian Processes Latent Variafgndering of the model in 3D, from a different view, along

Model prior (APF 5 GPLVM). In this case, the comparisoiwith the ground contacts. Our method, unlike APF with

may not be direct because we are not certain as to the ex@igfier prior, does not suffer from out-of-plane rotations,

form of the likelihood used in [24]; in addition [24] uses 50(has consistent ground contact pattern and can estimate

particles per layer of APF (as opposed to 250 in our implemegprrect heading of the subject that is consistent with the

tation). The difference in the number of particles/sampiay  direction of motion. APF, on the other hand, produces

explain slightly lower performance of our APF implemeraati Poses that tend to drift along the ground plane and face

(1325 versus 1182 (mm). Quantitatively, performance of in an opposite direction (APF 5 Mocap). For quantitative

our method is on par with that of [24] and is more accuragvaluation see Figure 11 (top right).

than that of APF 5 GPLVM, despite the fact that we are

using half as many samples/particles and a relatively gmpl

kinematic proposal process fqg. In addition, we expect our

method to produce more physically realistic motions.

h

N

moo

problems, resulting in physically implausible 3D hypotbes
(see Figure 10 (APF 5) bottom) and lead to more severe
) _ problems with local optima (see Figure 10 (APF 5) top).
4.5 Monocular Tracking (L1 walking) Figure 10 (Physics) bottom, illustrates the physical pilzility

The most signi cant bene t of our approach is that it can deaif the recovered 3D poses using our approach. Quantitgtivel
with monocular observations. Physical constraints endodeur model has 74 % lower error than PF and 76 % lower
in our prior help to properly place hypotheses and avoitror than APF with smooth prior; 76 % lower error than
over tting of monocular image evidence that lacks 3D inforboth PF and APF with kinematic motion capture prior, with
mation (see Figure 10 (Physics) and supplemental videe); ttonsiderably lower (roughl%) variance (see Figure 11 at top
results from PF and APF on the other hand suffer from thegght).
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Fig. 11. Quantitative Tracking Performance. Performance E S
of the proposed physics-based prior method (Physics) < (,E)

with different testing and training datasets versus stan-
dard Particle Filter (PF) and Annealed Particle Filter (APF
5) with 5 layers of annealing. Multi-view tracking perfor-
mance with 4 cameras and 250 particles is shown on the
left, monocular tracking performance with 1000 particles
on the right.

Fig. 12. Monocular Tracking (stairs). Ability of the pro-
posed model to generalize to complex interactions with
the environment is tested. While the prior is trained only
using level-ground walking, the tracker still performs well
on this more challenging terrain. Annealed particle Iter
with the kinematic motion capture prior (APF 5 Mocap)
4.6 Monocular Tracking (S3 jogging) fails to track this sequence completely. See text for addi-

Similar results can be seen for the jogging sequence ofcstubjtéonal details and discussion.

S3 from HUMANEVA-I dataset. The results are quantitatively
analyzed in Figure 11 (bottom right). See supplementalowide ) ) o
for the qualitative results. While it may seem that trackingrior method is able to illustrate such generalization a@ie
with single view performs better than with multiple viewsth® knowledge of the environment together with the ability t
this is not the case, because in the monocular sequence/@@S0n about interactions of the feet with the stairs thioug
report marker error with respect to the position of the pelvPhysics-based predictions are responsible for the regulti
(thereby ignoring the global translation of the body). performance.

To be fair, we would like to also acknowledge that the
lowest error of 18 (mm), with standard deviation of :3

(mm), on this sequence was reported by Urtaginal. in . . .
[49]. The method of [49], however, utilizes a very dif“ferenfl'8 Monocular Tracking (M jumping)

class of discriminative models. Discriminative modelsdenI the nal experiment (Figure 13), we illustrate perfor
.to produce quantitatively accura_lte perfon_”nance, but tesgrg the tracker on the fast motion 'of a subject jumping off a
N POSes that are extremely noisy over time (nq tempor%dge. Because we know that this is mostly ballistic motioa

continuity); these models are also dif cult to generaliagiew tuned the parameters of the decision process to alwayst selec

motions and/or poses that, in part, result from enwronmen{lﬂssive motion control policy (for more ef cient infererce

ngrggggﬂrsngsrigethmg we address with our model in the n‘%’ue physics-based model is able 'Fo track the person reasonab
' well, even though the footage is of poor quality and the
) ) motion is extremely fast, producing large changes in bodbgpo
4.7 Monocular Tracking (M stairs) between frames and motion blur (see supplemental video). Of
A key bene t of the proposed model is its ability to generalizparticular interest is the natural way body crouches asté hi
to complex interactions with the environment. In Figure @ a the ground (unlike what happens with more traditional kine-
supplemental video we illustrate performance of our trgckenatic priors,e.g, Figure 13 bottom right). Consequently, the
trained using level-ground walking of L1, on a new subjeqiose changes cannot be predicted by simpler smaoth &
walking up a set of stairs. Despite the fact that the pri@monstant-velocity or no-motion) motion prior models, bes@
is trained with clearly very different motion from the onehe noise required to account for the fast motion is simpty to
observed, our method is able to successfully track the lowarge to allow ef cient inference. Because this motion was n
body as it interacts with the stairs in order to support thgart of the motion capture training set, comparison with the
motion of the subject. To our knowledge, no other kinematimotion capture based prior is not possible (or meaningful).
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Fig. 13. Monocular Tracking (jump). Same as Figure 12,
except no motion capture data is used for training and
the model relies on passive motion control policy for
predictions.
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